Math 131A-1: Homework 2

Due: January 16, 2015

1. Read Sections $4-5$ in Ross.
2. Do problem 2.3, 3.4, 3.7, and 3.8 in Ross.
3. Do problems 4.1-4.4 in Ross for (a), (b), (m), (r), and (w). [Please do not use the answer formats suggested by the textbook; instead use complete sentences and standard capitalization.]
4. Let F be a field; that is, F is a set with two operations + and \times obeying the nine field axioms introduced in class.
(a) Show that the additive identity 0 postulated by axiom (A3) is unique; that is, show that if there is another element 0^{\prime} satisfying $a+0^{\prime}=a$ for all a in F, then $0^{\prime}=0$. Show also that for each $a \in F$, the additive inverse $-a$ is unique.
(b) Show that the multiplicative identity 1 postulated by axiom (M3) is unique, and that for each nonzero $a \in F$, the multiplicative inverse a^{-1} is unique.
5. Recall that the complex numbers \mathbb{C} are the set of all numbers $a+b i$ such that $a, b \in \mathbb{R}$ and i is a number satisfying $i^{2}=-1$. The operations of addition and multiplication on \mathbb{C} are as follows:

$$
\begin{aligned}
& (a+b i)+(c+d i)=(a+c)+(b+d) i \\
& (a+b i) \times(c+d i)=(a c-b d)+(a d+b c) i
\end{aligned}
$$

(a) Show that \mathbb{C} is a field.
(b) Show there is no relation \leq on \mathbb{C} which makes \mathbb{C} into an ordered field.

